
Unidad VI

Modularidad

6.1 Declaración de métodos.

En programación modular, y más específicamente en programación orientada a

objetos, se denomina Modularidad a la propiedad que permite subdividir una

aplicación en partes más pequeñas (llamadas módulos), cada una de las cuales

debe ser tan independiente como sea posible de la aplicación en sí y de las

restantes partes.

Estos módulos que se puedan compilar por separado, pero que tienen conexiones

con otros módulos. Al igual que la encapsulación, los lenguajes soportan la

Modularidad de diversas formas.

Según Bertrand Meyer ”El acto de particionar un programa en componentes

individuales para reducir su complejidad en algún grado. . . . A pesar de particionar

un programa es útil por esta razón, una justificación más poderosa para particionar

un programa es que crea una serie de límites bien definidos y documentados en el

programa. Estos límites, o interfaces, son muy valiosos en la comprensión del

programa”

Por su parte Bárbara Liskov establece que “modularización consiste en dividir un

programa en módulos que pueden ser compilados de forma separada, pero que

tienen conexiones con otros módulos”.

La declaración mínima sin modificadores de un método es:

Donde:

 TipoDevuelto es el tipo de dato devuelto por el método (función). Si el

método no devuelve ningún valor, en su lugar se indica la palabra

reservada void.

 NombreMetodo es un identificado válido en Java.

 Lista_Parametros si tiene parámetros, es una sucesión de pares tipo –

valor separados por comas. Los parámetros pueden ser también objetos.

http://es.wikipedia.org/wiki/Modularidad_(inform%C3%A1tica)#cite_note-0
http://es.wikipedia.org/wiki/Modularidad_(inform%C3%A1tica)#cite_note-0
http://es.wikipedia.org/wiki/Modularidad_(inform%C3%A1tica)#cite_note-1
http://es.wikipedia.org/wiki/Modularidad_(inform%C3%A1tica)#cite_note-1

Los tipos simples de datos se pasan siempre por valor y los objetos y

vectores por referencia

Cuando se declara una subclase, esa subclase hereda, en principio, todos los

atributos y métodos de la superclase (clase padre). estos métodos pueden ser

redefinidos en la clase hija simplemente declarando métodos con los mismos

identificadores, parámetros y tipo devuelto que los de la superclase. Si desde uno

de estos métodos redefinidos se desea realizar una llamada al método de la

superclase, se utiliza el identificador de la superclase y se le pasan los

parámetros.

6.2 Métodos de clase.

En la programación orientada a objetos, un método es una subrutina asociada

exclusivamente a una clase (llamados métodos de clase o métodos estáticos) o

a un objeto (llamados métodos de instancia). Análogamente a los

procedimientos en los lenguajes imperativos, un método consiste generalmente de

una serie de sentencias para llevar a cabo una acción, un juego de parámetros de

entrada que regularán dicha acción y o, posiblemente, un valor de salida (o valor

de retorno) de algún tipo.

Algunos lenguajes de programación asumen que un método debe de mantener

el invariante del objeto al que está asociado asumiendo también que éste es válido

cuando el método es invocado. En lenguajes compilados dinámicamente, los

métodos pueden ser objetos de primera clase, y en este caso se

puede compilar un método sin asociarse a ninguna clase en particular, y luego

asociar el vínculo o contrato entre el objeto y el método en tiempo de ejecución.

En cambio en lenguajes no compilados dinámicamente o tipados estáticamente,

se acude a precondiciones para regular los parámetros del método

y postcondiciones para regular su salida (en caso de tenerla). Si alguna de las

precondiciones o postcondiciones es falsa el método genera una excepción. Si el

estado del objeto no satisface la invariante de su clase al comenzar o finalizar un

método, se considera que el programa tiene un error de programación.

La diferencia entre un procedimiento (generalmente llamado función si devuelve

un valor) y un método es que éste último, al estar asociado con un objeto o clase

en particular, puede acceder y modificar los datos privados del objeto

correspondiente de forma tal que sea consistente con el comportamiento deseado

para el mismo. Así, es recomendable entender a un método no como una

secuencia de instrucciones sino como la forma en que el objeto es útil (el método

para hacer su trabajo). Por lo tanto, podemos considerar al método como el pedido

a un objeto para que realice una tarea determinada o como la vía para enviar un

mensaje al objeto y que éste reaccione acorde a dicho mensaje.

6.3 Métodos de instancia.

Cuando una declaración de método incluye un modificador static, se dice que el

método es un método estático. Si no existe un modificador static, se dice que el

método es un método de instancia.

Un método estático no opera en una instancia específica, y se produce un error en

tiempo de compilación al hacer referencia a this en un método estático.

Un método de instancia opera en una determinada instancia de una clase y es

posible tener acceso a dicha instancia con this

Cuando se hace referencia a un método en un acceso-a-miembro de la forma E.M,

si M es un método estático, E debe denotar un tipo que contenga M, y si M es un

método de instancia, E debe denotar una instancia de un tipo que contenga M.

