Unidad VI

Modularidad

6.1 Declaracién de métodos.

En programacion modular, y mas especificamente en programacion orientada a
objetos, se denomina Modularidad a la propiedad que permite subdividir una
aplicacion en partes mas pequefias (llamadas médulos), cada una de las cuales
debe ser tan independiente como sea posible de la aplicacion en siy de las
restantes partes.

Estos médulos que se puedan compilar por separado, pero que tienen conexiones
con otros modulos. Al igual que la encapsulacion, los lenguajes soportan la
Modularidad de diversas formas.

Segun Bertrand Meyer "El acto de particionar un programa en componentes
individuales para reducir su complejidad en algun grado. . . . A pesar de particionar
un programa es util por esta razon, una justificacibn mas poderosa para particionar
un programa es que crea una serie de limites bien definidos y documentados en el
programa. Estos limites, o interfaces, son muy valiosos en la comprension del
programa”

Por su parte Barbara Liskov establece que “modularizacion consiste en dividir un
programa en médulos que pueden ser compilados de forma separada, pero que
tienen conexiones con otros modulos”.

La declaracion minima sin modificadores de un método es:
Donde:

e TipoDevuelto es el tipo de dato devuelto por el método (funcién). Si el
método no devuelve ningun valor, en su lugar se indica la palabra
reservada void.

« NombreMetodo es un identificado valido en Java.

o Lista Parametros si tiene parametros, es una sucesion de pares tipo —
valor separados por comas. Los parametros pueden ser también objetos.

http://es.wikipedia.org/wiki/Modularidad_(inform%C3%A1tica)#cite_note-0
http://es.wikipedia.org/wiki/Modularidad_(inform%C3%A1tica)#cite_note-0
http://es.wikipedia.org/wiki/Modularidad_(inform%C3%A1tica)#cite_note-1
http://es.wikipedia.org/wiki/Modularidad_(inform%C3%A1tica)#cite_note-1

Los tipos simples de datos se pasan siempre por valor y los objetos y

vectores por referencia
Cuando se declara una subclase, esa subclase hereda, en principio, todos los
atributos y métodos de la superclase (clase padre). estos métodos pueden ser
redefinidos en la clase hija simplemente declarando métodos con los mismos
identificadores, parametros y tipo devuelto que los de la superclase. Si desde uno
de estos métodos redefinidos se desea realizar una llamada al método de la
superclase, se utiliza el identificador de la superclase y se le pasan los
parametros.

6.2 Métodos de clase.

En la programacion orientada a objetos, un método es una subrutina asociada
exclusivamente a una clase (llamados métodos de clase o métodos estaticos) o
a un objeto (Ilamados métodos de instancia). Andlogamente a los
procedimientos en los lenguajes imperativos, un método consiste generalmente de
una serie de sentencias para llevar a cabo una accién, un juego de parametros de
entrada que regularan dicha accion y o, posiblemente, un valor de salida (o valor
de retorno) de algun tipo.

Algunos lenguajes de programacion asumen que un método debe de mantener
el invariante del objeto al que esta asociado asumiendo también que éste es valido
cuando el método es invocado. En lenguajes compilados dinamicamente, los
métodos pueden ser objetos de primera clase, y en este caso se

puede compilar un método sin asociarse a ninguna clase en particular, y luego
asociar el vinculo o contrato entre el objeto y el método en tiempo de ejecucion.
En cambio en lenguajes no compilados dinamicamente o tipados estaticamente,
se acude a precondiciones para regular los parametros del método

y postcondiciones para regular su salida (en caso de tenerla). Si alguna de las
precondiciones o postcondiciones es falsa el método genera una excepcién. Si el
estado del objeto no satisface la invariante de su clase al comenzar o finalizar un
método, se considera que el programa tiene un error de programacion.

La diferencia entre un procedimiento (generalmente llamado funcién si devuelve
un valor) y un método es que éste ultimo, al estar asociado con un objeto o clase
en particular, puede acceder y modificar los datos privados del objeto

correspondiente de forma tal que sea consistente con el comportamiento deseado
para el mismo. Asi, es recomendable entender a un método no como una
secuencia de instrucciones sino como la forma en que el objeto es util (el método
para hacer su trabajo). Por lo tanto, podemos considerar al método como el pedido
a un objeto para que realice una tarea determinada o como la via para enviar un
mensaje al objeto y que éste reaccione acorde a dicho mensaje.

6.3 Métodos de instancia.

Cuando una declaracion de método incluye un modificador static, se dice que el
método es un método estatico. Si no existe un modificador static, se dice que el
método es un método de instancia.

Un método estatico no opera en una instancia especifica, y se produce un error en
tiempo de compilacion al hacer referencia a this en un método estatico.

Un método de instancia opera en una determinada instancia de una clase y es
posible tener acceso a dicha instancia con this

Cuando se hace referencia a un método en un acceso-a-miembro de la forma E.M,
si M es un método estatico, E debe denotar un tipo que contenga M, y si M es un
método de instancia, E debe denotar una instancia de un tipo que contenga M.

